- almost everywhere finite function
- почти всюду конечная функция
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Almost surely — In probability theory, one says that an event happens almost surely (a.s.) if it happens with probability one. The concept is analogous to the concept of almost everywhere in measure theory. It is often encountered in questions that involve… … Wikipedia
Dirac delta function — Schematic representation of the Dirac delta function by a line surmounted by an arrow. The height of the arrow is usually used to specify the value of any multiplicative constant, which will give the area under the function. The other convention… … Wikipedia
Integrable function — In mathematics, an integrable function is a function whose integral exists. Unless specifically stated, the integral in question is usually the Lebesgue integral. Otherwise, one can say that the function is Riemann integrable (i.e., its Riemann… … Wikipedia
Probability density function — Boxplot and probability density function of a normal distribution N(0, σ2). In probability theory, a probability density function (pdf), or density of a continuous random variable is a function that describes the relative likelihood for this… … Wikipedia
Cantor function — In mathematics, the Cantor function, named after Georg Cantor, is an example of a function that is continuous, but not absolutely continuous. DefinitionThe Cantor function c : [0,1] → [0,1] is defined as follows:#Express x in base 3. If possible … Wikipedia
Maximal function — Maximal functions appear in many forms in harmonic analysis (an area of mathematics). One of the most important of these is the Hardy–Littlewood maximal function. They play an important role in understanding, for example, the differentiability… … Wikipedia
Hardy-Littlewood maximal function — In mathematics, the Hardy Littlewood maximal operator M is a significant non linear operator used in real analysis and harmonic analysis. It takes a function f (a complex valued and locally integrable function) : f:mathbb{R}^{d} ightarrow… … Wikipedia
Gamma function — For the gamma function of ordinals, see Veblen function. The gamma function along part of the real axis In mathematics, the gamma function (represented by the capital Greek letter Γ) is an extension of the factorial function, with its… … Wikipedia
Hasse-Weil zeta function — In mathematics, the Hasse Weil zeta function attached to an algebraic variety V defined over a number field K is one of the two most important types of L function. Such L functions are called global , in that they are defined as Euler products in … Wikipedia
Dirichlet eta function — For the modular form see Dedekind eta function. Dirichlet eta function η(s) in the complex plane. The color of a point s encodes the value of η(s). Strong colors denote values close to zero and hue encodes the value s argumen … Wikipedia
Radon–Nikodym theorem — In mathematics, the Radon–Nikodym theorem is a result in functional analysis that states that, given a measurable space ( X , Sigma;), if a sigma finite measure nu; on ( X , Sigma;) is absolutely continuous with respect to a sigma finite measure… … Wikipedia